메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김원진 (인하대학교) 김성빈 (인하대학교) 유경송 (인하대학교) 김학일 (인하대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제27권 제2호
발행연도
2017.4
수록면
305 - 314 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 모바일 및 핀테크(fin-tech) 분야의 최신 트렌드로 지문인식, 홍채인식과 같은 생체인식을 통한 사용자 본인 인증이 주목 받고 있다. 특히 지문인식을 이용한 인증 방식은 전통적인 생체인식 방식으로써 사용자들이 사용하는데 발생하는 거부감이 다른 생체인식에 비해 현저히 낮아 현재 가장 보편적으로 이용되는 방식이다. 이와 동시에 지문을 이용한 인증 시 보안에 대한 중요성이 부각되어 지문의 위조 여부 판별의 중요성 또한 증가하고 있다. 본 논문에서는 CNN(Convolutional Neural Networks) 특징을 이용한 위조 여부 판별 방법에 있어 판별률을 향상시키기 위한 새로운 방법을 제시한다. 학습데이터에 영향을 많이 받는 CNN 특성 상 기존에는 판별률을 향상시키기 위해 아핀 변환(affine transformation) 또는 수평 반전(horizontal reflection)을 사용하여 학습데이터의 양을 증가 시키는 것이 일반적인 방법이었으나 본 논문에서는 위조지문 판별 난이도를 기반으로 한 효과적인 학습데이터 증강(data augmentation) 방법을 제시하며 실험을 통해 제안하는 방법의 타당성을 확인하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안하는 방법
IV. 실험
V. 결론
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0