메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제27권 제4호
발행연도
2016.8
수록면
959 - 967 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자산의 수익에 대한 분포 가정은 파생 상품의 가치 평가에 매우 중요한 역할을 한다. Elberlein과 Keller (1995)는 오랜 기간에 걸친 주식 자료를 바탕으로 혼합 자산의 분포에 대한 다양한 검정을 수행한 결과, 정규성 가정이 만족되지 않음을 확인한 바 있으며, 일반화 쌍곡분포가 보다 현실을 잘 반영하는 모형임을 확인하였다. 또한, Hu와 Kercheval (2007)은 6년간의 S&P500 지수의 분석에서 정규분포는 VaR (value at risk)을 과소 추정하는 반면, 일반화 쌍곡분포는 잘 적합함을 확인하였다. 일반화 쌍곡분포는, Barndorff-Nielsen (1977)이 처음 소개한 분포로, 첨도가 큰 특징을 가지는 금융 자료의 적합에 유용한 분포이다. 본 연구에서는 일반화 쌍곡분포를 모분포로 하는 선형 포트폴리오의 위험측도를 추정한다. 위험측도로는 VaR과 ES (expected short fall) 를 고려하였으며, 추정 방법으로는 안장점근사를 사용하였다. 안장점근사는 소표본에서도 정확한 근사를 제공하는 근사법으로 알려져 있다. 모의실험을 통해 위험측도에 대한 안장점근사의 정도가 매우 우수함을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001378243