메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현준 (경북대학교) 정구현 (울산대학교)
저널정보
한국트라이볼로지학회 Tribology and Lubricants Tribology and Lubricants 제36권 제2호
발행연도
2020.4
수록면
55 - 63 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, graphene has attracted considerable attention owing to its unique electrical, optical, thermal, and mechanical properties. The broad spectrum of applications from optics, sensors, and electronics to biodevice have been proposed based on these properties. In particular, graphene has been proposed as a protective coating layer and solid lubricant for microdevices and nanodevices because of its high mechanical strength, chemical inertness, and low friction characteristics. During the past decade, extensive efforts have been made to explore the tribological characteristics of graphene under various conditions and to expand its applicability. In addition to the experimental approaches, the molecular simulations performed provide fundamental insights into the friction and wear characteristics of graphene resulting from molecular interactions. This work is a review of the studies conducted over the past decade on the tribological characteristics of graphene using molecular simulation. These studies demonstrate the principal mechanisms of the superlubricity of graphene and help clarify the influences of surface conditions on tribological behavior. In particular, the investigation of the effects of the number of layers, strength of adhesion to the substrate, surface roughness, and commensurability provides deeper insights into the tribological characteristics of graphene. These fundamental understandings can help elucidate the feasibility of graphene as a protective coating layer and solid lubricant for microdevices and nanodevices.

목차

Abstract
1. 서론
2. 분자동역학 시뮬레이션 개요
3. 그래핀의 분자동역학 시뮬레이션 동향
4. 결론
References

참고문헌 (46)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-551-000587740