메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재민 (서울대) 박철수 (서울대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第36卷 第6號(通卷 第380號)
발행연도
2020.6
수록면
177 - 184 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Because the machine learning model is a black-box model, it is difficult to quantify the causality between inputs and outputs. In addition, the model is influenced by its inherent uncertainty in describing a system’s behavior of interest. In order for a machine learning model to be reliable, its prediction performance as well as uncertainty must be quantified together. Bayesian Neural Network (BNN) is a useful tool to describe stochastic characteristics of deep learning models by estimating distributions of the models’ weights. Model uncertainty in BNN can be classified into epistemic and aleatoric uncertainties. Epistemic uncertainty is caused by lack of data or knowledge. In contrast, aleatoric uncertainty is caused by outliers or noises inherent in training data and can be reduced by removing abnormal data from the training dataset. In this study, the BNN models were developed for a compression chiller in an existing office building with BEMS data, and then epistemic and aleatoric uncertainties were analyzed. It is found that both uncertainties are significant in the simulation model even though the model’s accuracy is satisfactory with the CVRMSE of less than 15%. It is suggested that before attempting to apply the machine learning model to real applications, the both uncertainties must be carefully analyzed. It is recommended that the both uncertainties can be reduced by adding more data as well as removing outliers.

목차

Abstract
1. 서론
2. 베이지안 신경망과 인식론적, 내재적 불확실성
3. 이상치 검출 방법
4. 베이지안 신경망 모델 제작
5. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-540-000910939