메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제57권 제2호
발행연도
2020.1
수록면
429 - 441 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $M(X,Y)$ denote the space of multipliers from $X$ to $Y,$ where $X$ and $Y$ are analytic function spaces. As we known, for Dirichlet-type spaces $\mathcal{D}_{\alpha}^p,$ $M(\mathcal{D}^p_{p-1},\mathcal{D}^q_{q-1})=\{0\},$ if $p\neq q,$ $0<p,q<\infty.$ If $0<p,q<\infty,$ $p\neq q,$ $0<s<1$ such that $p+s,q+s>1,$ then $M(\mathcal{D}^p_{p-2+s},\mathcal{D}^q_{q-2+s})=\{0\}.$ However, $X\cap\mathcal{D}^p_{p-1} \subseteq X\cap\mathcal{D}^q_{q-1}$ and $X\cap \mathcal{D}^p_{p-2+s} \subseteq X\cap \mathcal{D}^q_{q-2+s}$ whenever $X$ is a subspace of the Bloch space $\mathcal{B}$ and $0<p\leq q<\infty.$ This says that the set of multipliers $M(X\cap \mathcal{D}^p_{p-2+s},X\cap\mathcal{D}^q_{q-2+s})$ is nontrivial. In this paper, we study the multipliers $M(X\cap\mathcal{D}^p_{p-2+s},X\cap\mathcal{D}^q_{q-2+s})$ for distinct classical subspaces $X$ of the Bloch space $\mathcal{B},$ where $X=\mathcal{B},$ $BMOA$ or $\H^{\infty}.$

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0