메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제35권 제6호
발행연도
2019.1
수록면
999 - 1,009 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
북극항로의 개척 가능성과 정확한 기후 예측 모델의 필요성에 의해 북극해 고해상도 해빙 지도의 중요성이 증가하고 있다. 그러나 기존의 북극 해빙 지도는 제작에 사용된 위성 영상 취득 센서의 특성에 따른 데이터의 취득과 공간해상도 등에서 그 활용도가 제한된다. 본 연구에서는 Sentinel-1 A/B SAR 위성자료로부터 고해상도 해빙 지도를 생성하기 위한 딥러닝 기반의 해빙 분류 알고리즘을 연구하였다. 북극해 Ice Chart를 기반으로 전문가 판독에 의해 Open Water, First Year Ice, Multi Year Ice의 세 클래스로 구성된 훈련자료를 구축하였으며, Convolutional Neural Network 기반의 두 가지 딥러닝 모델(Simple CNN, Resnet50)과 입사각 및 thermal noise가 보정된 HV 밴드를 포함하는 다섯 가지 입력 밴드 조합을 이용하여 총 10가지 케이스의 해빙 분류를 실시하였다. 이 케이스들에 대하여 Ground Truth Point를 사용하여 정확도를 비교하고, 가장 높은 정확도가 나온케이스에 대해 confusion matrix 및 Cohen의 kappa 분석을 실시하였다. 또한 전통적으로 분류를 위해 많이 활용되어 온 Maximum Likelihood Classifier 기법을 이용한 분류결과에 대해서도 같은 비교를 하였다. 그 결과Convolution 층 2개, Max Pooling 층 2개를 가진 구조의 Convolutional Neural Network에 [HV, 입사각] 밴드를 넣은 딥러닝 알고리즘의 분류 결과가 96.66%의 가장 높은 분류 정확도를 보였으며, Cohen의 kappa 계수는 0.9499 로 나타나 딥러닝에 의한 해빙 분류는 비교적 높은 분류 결과를 보였다. 또한 모든 딥러닝 케이스는 Maximum Likelihood Classifier 기법에 비해 높은 분류 정확도를 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0