메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김예슬 (인하대학교 공간정보공학과) 유희영 (인하대학교 공간정보공학연구소) 박노욱 (인하대학교 공간정보공학과) 이경도 (농촌진흥청 국립농업과학원 기후변화생태과)
저널정보
한국지리정보학회 한국지리정보학회지 한국지리정보학회지 제18권 제3호
발행연도
2015.1
수록면
76 - 88 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
이 논문에서는 작물 재배지의 분류를 목적으로 능동 학습과 과거 토지 피복도 기반의 시간 문맥 정보를 결합하는 분류 방법론을 제안하였다. 신뢰성 높은 훈련 자료의 추출을 위하여 능동 학습 기반 반복 분류를 적용하였으며, 과거 토지 피복도의 작물 재배 규칙을 시간 문맥 정보로 정량화 하여 능동 학습 기법의 적용시 훈련 자료의 할당과 작물 간 분광학적 혼재 효과 완화에 이용하였다. 제안 분류 방법론의 적용 가능성을 평가하기 위해 미국 Illinois 주의 옥수수와 콩 재배지역의 구분을 목적으로 MODIS 시계열 식생지수 자료와 과거 cropland data layer(CDL) 자료를 이용한 사례연구를 수행하였다. 사례연구 결과, 초기 감독 분류 결과에서 나타났던 옥수수와 콩의 오분류와 기타 작물과 비작물의 오분류 양상이 능동 학습 기반 반복 분류를 통해 완화되었다. 그리고 CDL 자료로부터 추출한 시간 문맥 정보를 추가적으로 결합함으로써 주요 작물에서 나타나는 과추정 양상이 완화되어 가장 우수한 분류 정확도를 나타내었다. 따라서 제안 기법이 양질의 훈련 자료의 확보가 쉽지 않은 작물 재배지의 분류에 유용하게 적용될 수 있음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0