메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abdullah Harmanci (Hacettepe University) Handan Kose (Kirsehir Ahi Evran University) Burcu Ungor (Ankara University)
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제36권 제2호
발행연도
2021.1
수록면
209 - 227 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring $R$ {\it middle right-}(resp.~{\it left-}){\it nil symmetric} (mr-nil (resp.~ml-nil) symmetric, for short) if $abc = 0$ implies $acb = 0$ (resp.~$bac = 0)$ for $a$, $c\in R$ and $b\in $ nil$(R)$ where nil$(R)$ is the set of all nilpotent elements of $R$. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce {\it left} (resp.~{\it right}) {\it N-reversible ideal} $I$ of a ring $R$ if for any $a\in$ nil$(R)$, $b\in R$, being $ab \in I$ implies $ba \in I$ (resp.~$b\in$ nil$(R)$, $a\in R$, being $ab \in I$ implies $ba \in I$). A ring $R$ is called {\it left} (resp.~{\it right}) {\it N-reversible} if the zero ideal is left (resp.~right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0