메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
채종철 (서울대학교)
저널정보
한국우주과학회 Journal of Astronomy and Space Sciences Journal of Astronomy and Space Sciences 제38권 제2호
발행연도
2021.1
수록면
83 - 92 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The ionization degree of hydrogen is crucial in the physics of the plasma in the solar chromosphere. It specifically limits the range of plasma temperatures that can be determined from the Hα line. Given that the chromosphere greatly deviates from the local thermodynamic equilibrium (LTE) condition, precise determinations of hydrogen ionization require the solving of the full set of non-LTE radiative transfer equations throughout the atmosphere, which is usually a formidable task. In many cases, it is still necessary to obtain a quick estimate of hydrogen ionization without having to solve for the non-LTE radiative transfer. Here, we present a simple method to meet this need. We adopt the assumption that the photoionizing radiation field changes little over time, even if physical conditions change locally. With this assumption, the photoionization rate can be obtained from a published atmosphere model and can be used to determine the degree of hydrogen ionization when the temperature and electron density are specified. The application of our method indicates that in the chromospheric environment, plasma features contain more than 10% neutral hydrogen at temperatures lower than 17,000 K but less than 1% neutral hydrogen at temperatures higher than 23,000 K, implying that the hydrogen temperature determined from the Hα line is physically plausible if it is lower than 20,000 K, but may not be real, if it is higher than 25,000 K. We conclude that our method can be readily exploited to obtain a quick estimate of hydrogen ionization in plasma features in the solar chromosphere.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0