메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김다원 (부경대학교) 김성민 (강원대학교) 서장원 (강원대학교) 최요순 (부경대학교  )
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제42권 제1호
발행연도
2022.2
수록면
33 - 46 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
In this study, we proposed a new method of detecting abnormalities by analyzing power generation data of photovoltaic (PV) systems installed in renewable energy housing support project sites. The study site is north of Gakbuk-myeon, Cheongdo-gun, Gyeongsangbuk-do, Korea, where 63 PV systems have been installed and operated. Based on the system design and surrounding environment, the 63 PV systems were clustered into 6 groups using the K-means clustering method, which is an unsupervised machine learning algorithm. The power production data from the PV systems in each group were analyzed and set as abnormal values if they deviated from the range of ±2.58 times the standard deviation from the mean (assuming a normal distribution and 99% confidence interval). As a result, several abnormalities were detected in the PV systems in November 2020. The cause of the abnormalities was confirmed through site investigation. The proposed method is expected to accelerate the diagnosis of PV systems in renewable energy housing support project sites.

목차

Abstract
1. 서론
2. 연구지역
3. 연구방법
4. 결과
5. 토의
6. 결론
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-563-001094682