메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Samer Al Ghour (Jordan University of Science and Technology)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.22 No.1
발행연도
2022.3
수록면
89 - 99 (11page)
DOI
10.5391/IJFIS.2022.22.1.89

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The soft θ<SUB>ω</SUB>-closure operator is defined as a new soft operator that lies strictly between the usual soft closure and the soft θ-closure. Sufficient conditions are provided for equivalence between the soft θ<SUB>ω</SUB>-closure and usual soft closure operators, and between the soft θ<SUB>ω</SUB>-closure and soft θ-closure operators. Via the soft θ<SUB>ω</SUB>-closure operator, the soft θ<SUB>ω</SUB>-open sets are defined as a new class of soft sets that lies strictly between the class of soft open sets and the class of soft θ-open sets. It is proven that the class of soft θ<SUB>ω</SUB>-open sets form a new soft topology. The soft θ-regularity is characterized via both the soft θ<SUB>ω</SUB>-closure operator and soft θ<SUB>ω</SUB>-open sets. The soft product theorem and several soft mapping theorems are introduced. The correspondence between the soft topology of the soft θ<SUB>ω</SUB>-open sets of soft topological space and their generated topological spaces, and vice versa, are studied. In addition to these, soft θ<SUB>ω</SUB>-continuity as a strong form of soft θ-continuity is introduced and investigated.

목차

Abstract
1. Introduction
2. Soft θω-Closure Operator
3. Soft θω-Continuity
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-003-001069199