메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dongho LEE (Kyunghee University) Jinwoo CHOI (Kyunghee University)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
513 - 516 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 Action classification model은 computational resources의 제약으로 인해 video전체의 frame으로 학습하지 못한다. Model에 따라 다르지만, 대부분의 경우 하나의 action을 학습시키기 위해 보통 많게는 32frame, 적게는 8frame으로 model을 학습시킨다. 본 논문에서는 이 한계를 극복하기 위해 하나의 video의 많은 frame들을 mix-up과정을 거쳐 한장의 frame에 여러장의 frame 정보를 담고자 한다. 이 과정에서 video의 시간에 따른 변화(temporal- dynamics)를 손상시키지 않기 위해 linear mix-up이라는 방법을 제안하고 그 성능을 증명하며, 여러장의 frame을 mix-up시켜 모델의 성능을 향상시키는 가능성에 대해 논하고자 한다.

목차

요약
1. 서론
2. Frame Mix-up 방법
3. 실험 내용
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001633121