메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김다현 (포항공과대학교) 황병일 (포항공과대학교) 김경영 (포항공과대학교) 김동주 (포항공과대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2023년 한국컴퓨터정보학회 하계학술대회 논문집 제31권 2호
발행연도
2023.7
수록면
7 - 10 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 기후 변화가 심각해짐에 따라 수소 에너지에 대한 관심이 집중되고 있으며 이를 안전하게 운송/보관 할 수 있는 용기에 대한 연구도 활발히 진행되고 있다. 특히 고압 가스를 저장하는 TypeⅢ 용기의 노후화 및 안전과 관련되어 결함을 인지하는 연구가 활발하다. 그러나 이 용기의 외각층을 이루는 CFRP 소재는 탄소 섬유와 에폭시가 복잡한 구조로 구성되어 결함별 탐지가 매우 어렵다. 본 논문에서는 음향방출시험과 딥러닝을 활용하여 CFRP 결함 데이터셋을 구축하고 이를 분류할 수 있는 모델을 제안한다. 특히 CFRP 시편을 직접 제작하여 AE 센서를 부착하고 파괴하여 파형 데이터를 수집하였다. 이후 표현 학습을 통해 데이터의 특징을 압축/추출하고 유사도를 비교해 결함별 데이터를 판별하는 알고리즘을 개발하였다. 구축된 데이터셋의 실루엣 계수는 0.86으로 높은 군집도를 보였다. 마지막으로 구축된 데이터셋을 실시간으로 분류할 수 있는 1D-CNN 딥러닝 모델을 개발하였으며 99.33%의 높은 분류 정확도를 보였다.

목차

요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001646548