메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
고승환 (충북대학교 농업생명환경대학 지역건설공학과) 정경수 (충북대학교 농업생명환경대학 지역건설공학과)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제40권 제1호
발행연도
2024.2
수록면
9 - 18 (10page)
DOI
https://doi.org/10.7780/kjrs.2024.40.1.2

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Small streams, despite their rich ecosystems, face challenges in vegetation assessment due tothe limitations of traditional, time-consuming methods. This study presents a groundbreaking approach,combining unmanned aerial vehicles (UAVs), convolutional neural networks (CNNs), and the vegetationdifferential vegetation index (VDVI), to revolutionize both assessment and management of streamvegetation. Focusing on Idong Stream in South Korea (2.7 km long, 2.34 km² basin area) with eight diverserevetment methods, we leveraged high-resolution RGB images captured by UAVs across five dates (July–December). These images trained a ResNeXt101 CNN model, achieving an impressive 89% accuracy inclassifying vegetation cover (soil, water, and vegetation). This enabled detailed spatial and temporal analysisof vegetation distribution. Further, VDVI calculations on classified vegetation areas allowed assessmentof vegetation vitality. Our key findings showcase the power of this approach: (a) The CNN model generatedhighly accurate cover maps, facilitating precise monitoring of vegetation changes over time and space. (b)August displayed the highest average VDVI (0.24), indicating peak vegetation growth crucial for stabilizingstreambanks and resisting flow. (c) Different revetment methods impacted vegetation vitality. Fieldstonesections exhibited initial high vitality followed by decline due to leaf browning. Block-type sections andthe control group showed a gradual decline after peak growth. Interestingly, the “H environment block”exhibited minimal change, suggesting potential benefits for specific ecological functions. (d) Despite initialdifferences, all sections converged in vegetation distribution trends after 15 years due to the influence ofsurrounding vegetation. This study demonstrates the immense potential of UAV-based remote sensingand CNNs for revolutionizing small-stream vegetation assessment and management. By providing high-resolution, temporally detailed data, this approach offers distinct advantages over traditional methods,ultimately benefiting both the environment and surrounding communities through informed decision-making for improved stream health and ecological conservation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0