메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyuseok Kim (Eulji University) Hajin Kim (General Graduate School of Gachon University) Sewon Lim (General Graduate School of Gachon University) Seong-Hyeon Kang (Gachon University) Youngjin Lee (Gachon University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.30 No.1
발행연도
2025.3
수록면
67 - 73 (7page)
DOI
10.4283/JMAG.2025.30.1.67

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Metal artifacts in brain magnetic resonance imaging (MRI) severely distort the magnetic field, degrading image quality. It arises from differences in magnetic susceptibility between metallic implants and surrounding tissues, distorting the magnetic field. These artifacts compromise diagnostic accuracy for conditions such as cerebrovascular diseases, tumors, and strokes, posing challenges for follow-up studies and interventional procedures. Traditional approaches to reduce artifacts, such as using low-field MRI, lead to lower signal-tonoise ratios, prompting the need for advanced software-based solutions. Addressing this challenge, we propose an exemplar-based inpainting algorithm to restore brain magnetic resonance (MR) images affected by metal artifacts. Using T1-weighted brain images from the Alzheimer’s Disease Neuroimaging Initiative, we modeled scenarios with one and three metal components. We compared our method against partial differential equation and coherence transport algorithms using structural similarity index measure (SSIM) and natural image quality evaluator (NIQE) metrics. The exemplar-based algorithm outperformed the alternatives, achieving SSIM and NIQE values of 0.980 and 4.39, respectively, demonstrating improvements of up to 4.71 % in SSIM and 14.26 % in NIQE over conventional methods. These results highlight the potential of our approach to enhance artifact reduction in MR imaging, providing a robust solution for clinical applications.

목차

1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092447187