메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Daisuke YUKI (Kyushu Institute of Technology) Hyoungseop KIM (Kyushu Institute of Technology) Joo Kooi TAN (Kyushu Institute of Technology) Seiji ISHIKAWA (Kyushu Institute of Technology) Masanori TSUKUDA (Kyushu Institute of Technology) Ichiro OMURA (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
1,551 - 1,554 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, the necessity of environmental regulation, low fuel consumption, and natural energy development is proposed by environmental issues. So the demands of power transistor devices are increased. But measurement technique of the current distribution is not keeping up with further miniaturized and integrated were needed in present condition. Now, therefore, ensuring security attended high functionalization is a subject. IGBT (Insulated Gate Bipolar Transistor) is the device that used for wide range of power devices. So we are developing imaging system used non-contact sensor arrays aimed to IGBT production line.
In this paper, we propose a development of a supporting system for visual inspection IGBT device based on statistical feature and complex multi-resolution analysis. First, this performs signal de-noising after entering well-known good data and measured data. Second, the statistical feature is expressed the difference between good data and measured data are calculated. Last, classifying of good and inferiority is performed based on the result of threshold processing. In the paper, we applied our algorithm to 28 sample data including 20 good data and 8 inferiority data.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001919487