메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Eun-sung Kim (Kyung Hee University)
저널정보
한국과학기술학회 한국과학기술학회 학술대회 2016년 한국과학기술학회 후기 학술대회
발행연도
2016.12
수록면
193 - 212 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study addresses the sensory embeddedness of trading, built on the sociology of senses, which differs from existing concepts of embeddedness in economic sociology. It uses the notions of sensory capital and power to account for the sensory embeddedness of trading and examines the relationship between the senses, technology, and trade. Through qualitative interviews and participant observations at Garak Market, Seoul, South Korea, this study compares hand-signal trading with electronic trading in agricultural produce auctions. It analyzes how the senses affect the estimation and formation of an auction price, as well as how they contribute to the construction of economic agency and social relationships among economic actors. The study then examines the impact of technologies in electronic trading (e.g., trading screens, computer monitors, and wireless bidding terminals) on the sensory embeddedness of trading in terms of seeing, hearing, and touching. It argues that such technologies do not get rid of the sensory embeddedness of economic life, but instead change its modality. This transforms sensory power struggles, forming looser, but more equal relationship between auctioneers and buyers, leading to a decrease in the overall auction price in the market.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Conceptual framework : Sensory embeddedness of economic life
Ⅲ. Field site : Garak Market
Ⅳ. Shaping sensory capital at the pre-auction stage
Ⅴ. Sensory power and technology in auction
Ⅵ. The construction of a sensory agency and social relationships
Ⅶ. Senses, technology, and auction price
Ⅷ. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0