메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제10권 제4호
발행연도
2015.1
수록면
455 - 463 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Reinforcement learning is concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In particular, a multi-agent system consisting of multiple interacting agents has increased state and action space as compared to a single agent system, so it must have an effective action selection mechanism. Reinforcement learning is used to evaluate and improve the effectiveness of a robotic soccer agent's action selection. That is, an agent that chooses its actions according to a certain action selection policy receives feedback regarding whether the chosen actions are desirable or not, and the agent learns to find optimal actions for various states in simulated soccer games based on the feedback. Possible states were identified by analyzing various situations/conditions arising in simulated soccer games, and then action selection policies were defined based on the analysis of a soccer agent's behavior patterns. In this paper can be exploited to develop optimized strategies and tactics for robot soccer systems, and it is also applicable to other multi-agent learning environments similar to the robot soccer game environment. In such environments, it is significant to acquire a policy that enables intelligent agents to work cooperatively to win the game.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0