메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김민우 (가천대학교) 배진희 (가천대학교) 왕보현 (가천대학교) 임준식 (가천대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제19권 제12호
발행연도
2021.12
수록면
347 - 352 (6page)
DOI
https://doi.org/10.14400/JDC.2021.19.12.347

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 다중 에이전트 강화학습 방식을 사용하여 입력 데이터로부터 분류에 효과적인 특징 집합을 찾아내는 방식을 제안한다. 기계 학습 분야에 있어서 분류에 적합한 특징들을 찾아내는 것은 매우 중요하다. 데이터에는 수많은 특징들이 존재할 수 있으며, 여러 특징들 중 일부는 분류나 예측에 효과적일 수 있지만 다른 특징들은 잡음 역할을 함으로써 올바른 결과를 생성하는 데에 오히려 악영향을 줄 수 있다. 기계 학습 문제에서 분류나 예측 정확도를 높이기 위한 특징 선택은 매우 중요한 문제 중 하나이다. 이러한 문제를 해결하기 위해 강화학습을 통한 특징 선택 방법을 제시한다. 각각의 특징들은 하나의 에이전트를 가지게 되며, 이 에이전트들은 특징을 선택할 것인지 말 것인지에 대한 여부를 결정한다. 에이전트들에 의해 선택된 특징들과 선택되지 않은 특징들에 대해서 각각 보상을 구한 뒤, 보상에 대한 비교를 통해 에이전트의 Q-value 값을 업데이트 한다. 두 하위 집합에 대한 보상 비교는 에이전트로 하여금 자신의 행동이 옳은지에 대한 판단을 내릴 수 있도록 도와준다. 이러한 과정들을 에피소드 수만큼 반복한 뒤, 최종적으로 특징들을 선별한다. 이 방법을 통해 Wisconsin Breast Cancer, Spambase, Musk, Colon Cancer 데이터 세트에 적용한 결과, 각각 0.0385, 0.0904, 0.1252, 0.2055의 정확도 향상을 보여주었으며, 최종적으로 0.9789, 0.9311, 0.9691, 0.9474의 분류 정확도를 보여주었다. 이는 우리가 제안한 방법이 분류에 효과적인 특징들을 잘 선별하고 분류에 대한 정확도를 높일 수 있음을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0